Skip to main content
Agno supports using PostgreSQL asynchronously, with the AsyncPostgresDb class.

Usage

Run PgVector

Install docker desktop and run PgVector on port 5532 using:
docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agnohq/pgvector:16
async_postgres_for_team.py
import asyncio
from typing import List

from agno.agent import Agent
from agno.db.async_postgres import AsyncPostgresDb
from agno.models.openai import OpenAIChat
from agno.team import Team
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.hackernews import HackerNewsTools
from pydantic import BaseModel

db_url = "postgresql+psycopg_async://ai:ai@localhost:5532/ai"
db = AsyncPostgresDb(db_url=db_url)


class Article(BaseModel):
    title: str
    summary: str
    reference_links: List[str]


hn_researcher = Agent(
    name="HackerNews Researcher",
    model=OpenAIChat("gpt-4o"),
    role="Gets top stories from hackernews.",
    tools=[HackerNewsTools()],
)

web_searcher = Agent(
    name="Web Searcher",
    model=OpenAIChat("gpt-4o"),
    role="Searches the web for information on a topic",
    tools=[DuckDuckGoTools()],
    add_datetime_to_context=True,
)


hn_team = Team(
    name="HackerNews Team",
    model=OpenAIChat("gpt-4o"),
    members=[hn_researcher, web_searcher],
    db=db,
    instructions=[
        "First, search hackernews for what the user is asking about.",
        "Then, ask the web searcher to search for each story to get more information.",
        "Finally, provide a thoughtful and engaging summary.",
    ],
    output_schema=Article,
    markdown=True,
    show_members_responses=True,
)

asyncio.run(
    hn_team.aprint_response("Write an article about the top 2 stories on hackernews")
)

Params

ParameterTypeDefaultDescription
db_idOptional[str]-The ID of the database instance. UUID by default.
db_urlOptional[str]-The database URL to connect to.
db_engineOptional[AsyncEngine]-The SQLAlchemy asyncdatabase engine to use.
db_schemaOptional[str]-The database schema to use.
session_tableOptional[str]-Name of the table to store Agent, Team and Workflow sessions.
memory_tableOptional[str]-Name of the table to store memories.
metrics_tableOptional[str]-Name of the table to store metrics.
eval_tableOptional[str]-Name of the table to store evaluation runs data.
knowledge_tableOptional[str]-Name of the table to store knowledge content.

Developer Resources

I