Skip to main content
Agno supports using PostgreSQL asynchronously, with the AsyncPostgresDb class.

Usage

Run PgVector

Install docker desktop and run PgVector on port 5532 using:
docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agnohq/pgvector:16
async_postgres_for_agent.py
import asyncio

from agno.agent import Agent
from agno.db.async_postgres import AsyncPostgresDb
from agno.tools.duckduckgo import DuckDuckGoTools

db_url = "postgresql+psycopg_async://ai:ai@localhost:5532/ai"
db = AsyncPostgresDb(db_url=db_url)

agent = Agent(
    db=db,
    tools=[DuckDuckGoTools()],
    add_history_to_context=True,
    add_datetime_to_context=True,
)


asyncio.run(agent.aprint_response("How many people live in Canada?"))
asyncio.run(agent.aprint_response("What is their national anthem called?"))

Params

ParameterTypeDefaultDescription
db_idOptional[str]-The ID of the database instance. UUID by default.
db_urlOptional[str]-The database URL to connect to.
db_engineOptional[AsyncEngine]-The SQLAlchemy asyncdatabase engine to use.
db_schemaOptional[str]-The database schema to use.
session_tableOptional[str]-Name of the table to store Agent, Team and Workflow sessions.
memory_tableOptional[str]-Name of the table to store memories.
metrics_tableOptional[str]-Name of the table to store metrics.
eval_tableOptional[str]-Name of the table to store evaluation runs data.
knowledge_tableOptional[str]-Name of the table to store knowledge content.

Developer Resources

I