Code
knowledge.py
Copy
Ask AI
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.models.aws import AwsBedrock
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = Knowledge(
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
knowledge_base.add_content(
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"
)
agent = Agent(
model=AwsBedrock(id="mistral.mistral-large-2402-v1:0"), markdown=True
knowledge=knowledge_base,
)
agent.print_response("How to make Thai curry?", markdown=True)
Usage
1
Create a virtual environment
Open the
Terminal and create a python virtual environment.Copy
Ask AI
python3 -m venv .venv
source .venv/bin/activate
2
Set your AWS Credentials
Copy
Ask AI
export AWS_ACCESS_KEY_ID=***
export AWS_SECRET_ACCESS_KEY=***
export AWS_REGION=***
3
Install libraries
Copy
Ask AI
pip install -U boto3 sqlalchemy pgvector pypdf openai psycopg agno
4
Run PgVector
Copy
Ask AI
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
5
Run Agent
Copy
Ask AI
python knowledge.py