from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.team import Team
def get_user_profile(user_id: str = "john_doe") -> dict:
"""Get user profile information that can be referenced in responses."""
profiles = {
"john_doe": {
"name": "John Doe",
"preferences": {
"communication_style": "professional",
"topics_of_interest": ["AI/ML", "Software Engineering", "Finance"],
"experience_level": "senior",
},
"location": "San Francisco, CA",
"role": "Senior Software Engineer",
}
}
return profiles.get(user_id, {"name": "Unknown User"})
def get_current_context() -> dict:
"""Get current contextual information like time, weather, etc."""
from datetime import datetime
return {
"current_time": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"timezone": "PST",
"day_of_week": datetime.now().strftime("%A"),
}
profile_agent = Agent(
name="ProfileAnalyst",
model=OpenAIChat(id="gpt-5-mini"),
instructions="You analyze user profiles and provide personalized recommendations.",
)
context_agent = Agent(
name="ContextAnalyst",
model=OpenAIChat(id="gpt-5-mini"),
instructions="You analyze current context and timing to provide relevant insights.",
)
team = Team(
name="PersonalizationTeam",
model=OpenAIChat(id="gpt-5-mini"),
members=[profile_agent, context_agent],
dependencies={
"user_profile": get_user_profile,
"current_context": get_current_context,
},
add_dependencies_to_context=True,
debug_mode=True,
markdown=True,
)
response = team.run(
"Please provide me with a personalized summary of today's priorities based on my profile and interests.",
)
print(response.content)
# ------------------------------------------------------------
# ASYNC EXAMPLE
# ------------------------------------------------------------
# async def test_async():
# async_response = await team.arun(
# "Based on my profile, what should I focus on this week? Include specific recommendations.",
# )
#
# print("\n=== Async Run Response ===")
# print(async_response.content)
# # Run the async test
# import asyncio
# asyncio.run(test_async())