Code
Copy
Ask AI
import asyncio
import random
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.eval.performance import PerformanceEval
from agno.models.openai import OpenAIChat
from agno.team.team import Team
cities = [
"New York",
"Los Angeles",
"Chicago",
"Houston",
"Miami",
"San Francisco",
"Seattle",
"Boston",
"Washington D.C.",
"Atlanta",
"Denver",
"Las Vegas",
]
# Setup the database
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
db = PostgresDb(db_url=db_url)
def get_weather(city: str) -> str:
return f"The weather in {city} is sunny."
weather_agent = Agent(
id="weather_agent",
model=OpenAIChat(id="gpt-5-mini"),
role="Weather Agent",
description="You are a helpful assistant that can answer questions about the weather.",
instructions="Be concise, reply with one sentence.",
tools=[get_weather],
db=db,
enable_user_memories=True,
add_history_to_context=True,
)
team = Team(
members=[weather_agent],
model=OpenAIChat(id="gpt-5-mini"),
instructions="Be concise, reply with one sentence.",
db=db,
markdown=True,
enable_user_memories=True,
add_history_to_context=True,
)
async def run_team():
random_city = random.choice(cities)
_ = team.arun(
input=f"I love {random_city}! What weather can I expect in {random_city}?",
stream=True,
stream_intermediate_steps=True,
)
return "Successfully ran team"
team_response_with_memory_impact = PerformanceEval(
name="Team Memory Impact",
func=run_team,
num_iterations=5,
warmup_runs=0,
measure_runtime=False,
debug_mode=True,
memory_growth_tracking=True,
)
if __name__ == "__main__":
asyncio.run(
team_response_with_memory_impact.arun(print_results=True, print_summary=True)
)