Skip to main content
This example demonstrates how to implement Agentic RAG using LanceDB vector database with OpenAI embeddings, enabling the agent to search and retrieve relevant information dynamically.

Code

agentic_rag_lancedb.py
"""
1. Run: `pip install openai lancedb tantivy pypdf sqlalchemy agno` to install the dependencies
2. Run: `python cookbook/rag/04_agentic_rag_lancedb.py` to run the agent
"""

from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.vectordb.lancedb import LanceDb, SearchType

knowledge = Knowledge(
    # Use LanceDB as the vector database and store embeddings in the `recipes` table
    vector_db=LanceDb(
        table_name="recipes",
        uri="tmp/lancedb",
        search_type=SearchType.vector,
        embedder=OpenAIEmbedder(id="text-embedding-3-small"),
    ),
)

knowledge.add_content(
    url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"
)

agent = Agent(
    model=OpenAIChat(id="gpt-5-mini"),
    knowledge=knowledge,
    # Add a tool to search the knowledge base which enables agentic RAG.
    # This is enabled by default when `knowledge` is provided to the Agent.
    search_knowledge=True,
    markdown=True,
)
agent.print_response(
    "How do I make chicken and galangal in coconut milk soup", stream=True
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U agno openai lancedb tantivy pypdf sqlalchemy
3

Export your OpenAI API key

  export OPENAI_API_KEY="your_openai_api_key_here"
4

Create a Python file

Create a Python file and add the above code.
touch agentic_rag_lancedb.py
5

Run Agent

python agentic_rag_lancedb.py
6

Find All Cookbooks

Explore all the available cookbooks in the Agno repository. Click the link below to view the code on GitHub:Agno Cookbooks on GitHub
I