from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.tools.knowledge import KnowledgeTools
from agno.vectordb.lancedb import LanceDb, SearchType
# Create a knowledge base containing information from a URL
agno_docs = Knowledge(
# Use LanceDB as the vector database and store embeddings in the `agno_docs` table
vector_db=LanceDb(
uri="tmp/lancedb",
table_name="agno_docs",
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
agno_docs.add_content(
url="https://docs.agno.com/llms-full.txt"
)
knowledge_tools = KnowledgeTools(
knowledge=agno_docs,
think=True,
search=True,
analyze=True,
add_few_shot=True,
)
agent = Agent(
model=OpenAIChat(id="gpt-5-mini"),
tools=[knowledge_tools],
markdown=True,
)
if __name__ == "__main__":
agent.print_response("How do I build multi-agent teams with Agno?", stream=True)