Skip to main content
This example shows:
  1. Using run_context.session_state in a Router selector function
  2. Making routing decisions based on session state data
  3. Accessing user preferences and history from run_context.session_state
  4. Dynamically selecting different agents based on user context
1

Create a Python file

Create a file named access_session_state_in_router_selector_function.py
2

Add code to file

access_session_state_in_router_selector_function.py
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.workflow.router import Router
from agno.workflow.step import Step, StepInput, StepOutput
from agno.workflow.workflow import Workflow
from agno.run import RunContext


def route_based_on_user_preference(step_input: StepInput, run_context: RunContext) -> Step:
    """
    Router selector that chooses an agent based on user preferences in session_state.

    Args:
        step_input: The input for this step (contains user query)
        run_context: The run context object

    Returns:
        Step: The step to execute based on user preference
    """
    print("\n=== Routing Decision ===")
    print(f"User ID: {run_context.session_state.get('current_user_id')}")
    print(f"Session ID: {run_context.session_state.get('current_session_id')}")

    # Get user preference from session state
    user_preference = run_context.session_state.get("agent_preference", "general")
    interaction_count = run_context.session_state.get("interaction_count", 0)

    print(f"User Preference: {user_preference}")
    print(f"Interaction Count: {interaction_count}")

    # Update interaction count
    run_context.session_state["interaction_count"] = interaction_count + 1

    # Route based on preference
    if user_preference == "technical":
        print("→ Routing to Technical Expert")
        return technical_step
    elif user_preference == "friendly":
        print("→ Routing to Friendly Assistant")
        return friendly_step
    else:
        # For first interaction, route to onboarding
        if interaction_count == 0:
            print("→ Routing to Onboarding (first interaction)")
            return onboarding_step
        else:
            print("→ Routing to General Assistant")
            return general_step


def set_user_preference(step_input: StepInput, run_context: RunContext) -> StepOutput:
    """Custom function that sets user preference based on onboarding."""
    print("\n=== Setting User Preference ===")

    # In a real scenario, this would analyze the user's response
    # For demo purposes, we'll set it based on interaction count
    interaction_count = run_context.session_state.get("interaction_count", 0)

    if interaction_count % 3 == 1:
        run_context.session_state["agent_preference"] = "technical"
        preference = "technical"
    elif interaction_count % 3 == 2:
        run_context.session_state["agent_preference"] = "friendly"
        preference = "friendly"
    else:
        run_context.session_state["agent_preference"] = "general"
        preference = "general"

    print(f"Set preference to: {preference}")
    return StepOutput(content=f"Preference set to: {preference}")


# Create specialized agents
onboarding_agent = Agent(
    name="Onboarding Agent",
    model=OpenAIChat(id="gpt-4o-mini"),
    instructions=(
        "Welcome new users and ask about their preferences. "
        "Determine if they prefer technical or friendly assistance."
    ),
    markdown=True,
)

technical_agent = Agent(
    name="Technical Expert",
    model=OpenAIChat(id="gpt-4o-mini"),
    instructions=(
        "You are a technical expert. Provide detailed, technical answers with code examples and best practices."
    ),
    markdown=True,
)

friendly_agent = Agent(
    name="Friendly Assistant",
    model=OpenAIChat(id="gpt-4o-mini"),
    instructions=(
        "You are a friendly, casual assistant. Use simple language, emojis, and make the conversation fun."
    ),
    markdown=True,
)

general_agent = Agent(
    name="General Assistant",
    model=OpenAIChat(id="gpt-4o-mini"),
    instructions=(
        "You are a balanced assistant. Provide helpful answers that are neither too technical nor too casual."
    ),
    markdown=True,
)

# Create steps for routing
onboarding_step = Step(
    name="Onboard User",
    description="Onboard new user and set preferences",
    agent=onboarding_agent,
)

technical_step = Step(
    name="Technical Response",
    description="Provide technical assistance",
    agent=technical_agent,
)

friendly_step = Step(
    name="Friendly Response",
    description="Provide friendly assistance",
    agent=friendly_agent,
)

general_step = Step(
    name="General Response",
    description="Provide general assistance",
    agent=general_agent,
)

# Create workflow with router
workflow = Workflow(
    name="Adaptive Assistant Workflow",
    steps=[
        # Router that selects agent based on session state
        Router(
            name="Route to Appropriate Agent",
            description="Route to the appropriate agent based on user preferences",
            selector=route_based_on_user_preference,
            choices=[
                onboarding_step,
                technical_step,
                friendly_step,
                general_step,
            ],
        ),
        # After first interaction, update preferences
        Step(
            name="Update Preferences",
            description="Update user preferences based on interaction",
            executor=set_user_preference,
        ),
    ],
    session_state={
        "agent_preference": "general",
        "interaction_count": 0,
    },
)


def run_example():
    """Run the example workflow multiple times to see dynamic routing."""

    queries = [
        "Hello! I'm new here.",
        "How do I implement a binary search tree in Python?",
        "What's the best pizza topping?",
        "Explain quantum computing",
    ]

    for i, query in enumerate(queries, 1):
        print("\n" + "=" * 80)
        print(f"Interaction {i}: {query}")
        print("=" * 80)

        workflow.print_response(
            input=query,
            session_id="user-456",
            user_id="user-456",
            stream=True,
        )


if __name__ == "__main__":
    run_example()
3

Setup venv

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
4

Install libraries

pip install agno openai
5

Set OpenAI Key

Set OpenAI Key

Set your OPENAI_API_KEY as an environment variable. You can get one from OpenAI.
export OPENAI_API_KEY=sk-***
6

Run the workflow

python access_session_state_in_router_selector_function.py